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Effects of different carbohydrate
sources on fructan metabolism in
plants of Chrysolaena obovata grown
in vitro
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Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an

Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore

dry mass as inulin-type fructans. Considering its high inulin production and the wide

application of fructans, a protocol for C. obovata in vitro culture was recently established.

Carbohydrates are essential for in vitro growth and development of plants and can also

act as signaling molecules involved in cellular adjustments and metabolic regulation.

This work aimed to evaluate the effect of different sources of carbohydrate on fructan

metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro

were submitted to carbon deprivation and transferred to MS medium supplemented

with sucrose, glucose or fructose. Following, their fructan composition and activity and

expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT) and

degradation (1-FEH) were evaluated. For qRT-PCR analysis partial cDNA sequences

corresponding to two different C. obovata genes, 1-SST and 1-FFT, were isolated. As

expected, C. obovata sequences showed highest sequence identity to other Asteraceae

1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated

the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate

supplementation promoted reversal of the expression profile of these genes. With the

exception of 1-FFT, a positive correlation between enzyme activity and gene expression

was observed. The overall results indicate that sucrose, fructose and glucose act similarly

on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar

in this species. Cultivation of plants in increasing sucrose concentrations stimulated

synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme

activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential

regulation between them.

Keywords: inulin, plant tissue culture, 1-SST, 1-FFT, 1-FEH, sucrose, sugar modulation, relative expression
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Introduction

The Cerrado and its savanna like vegetation is the second
largest biome in the Brazilian territory, being outsized only
by the Amazon rain forest. It covers approximately 21% of
the Brazilian land area and is characterized by a well-defined
seasonality, concerning the water regime, which includes a humid
summer and a dry winter often lasting up to 5 months (Eiten,
1972; Coutinho, 2002). The presence of fructan accumulating
Asteraceae in the Cerrado has been well documented in
various studies (Figueiredo-Ribeiro et al., 1986; Tertuliano and
Figueiredo-Ribeiro, 1993; Joaquim et al., 2014).

Chrysolaena obovata (Less.) Dematt., previously named
Vernonia herbacea (Asteraceae), is a perennial herb native to and
widely spread in the Brazilian Cerrado (Figueiredo-Ribeiro et al.,
1986). Seeds of C. obovata present a very low germination rate
and only 15% of the achenes enclose embryos (Sassaki et al.,
1999). Due to limited seed germination, the underground reserve
organ, rhizophore, is commonly used for vegetative propagation
(Hayashi and Appezzato-da-Glória, 2005). Nonetheless, in a
recent study, seeds were successfully used as explant material for
the establishment of in vitro culture of C. obovata (Trevisan et al.,
2014). Besides the role in vegetative propagation, the rhizophores
accumulate ca. 80% of its dry mass as inulin type fructans
(Carvalho and Dietrich, 1993), showing a high potential for
inulin production. Previous results showing efficient production
of inulin in field trials and in vitro by C. obovata (Carvalho et al.,
1998; Trevisan et al., 2014) suggest that this native species could
be a promising alternative for fructan production, since inulin
for commercial use is mainly extracted from roots of Chichorium
intybus L.

Inulin is synthesized from sucrose by the action of
fructosyltransferases. The first enzyme, sucrose:sucrose
fructosyltransferase (1-SST, EC 2.4.1.99), catalyses the
production of the trisaccharide 1-kestotriose. The second
enzyme, fructan:fructan fructosyltransferase (1-FFT, EC
2.4.1.100), catalyses the reversible transfer of fructosyl units from
a fructan molecule with a DP ≥ 3 to another fructan molecule
or to sucrose, resulting in fructan chains with a wide range of
lengths. Inulin degradation is catalyzed by fructan exohydrolase
(1-FEH, EC 3.2.1.153), which releases free fructose from the
terminal non-reducing fructosyl unit (Edelman and Jefford,
1968; Carvalho et al., 2007). The gene coding for C. obovata
1-FEH has been isolated and its activity on inulin hydrolysis has
been confirmed by heterologous expression in Pichia pastoris
(Asega et al., 2008).

Fructan metabolism is regulated by several endogenous
factors such as hormones and sugars (Kusch et al., 2009;
Súarez-González et al., 2014; Trevisan et al., 2014), as well as
by exogenous factors, such as low temperature, drought, CO2

atmospheric concentration (De Roover et al., 1999; Livingston

Abbreviations: 1-FEH, fructan exohydrolase; 1-FFT, fructan:fructan

fructosyltransferase; 1-SST, sucrose:sucrose fructosyltransferase; 18S, 18S

ribosomal RNA; EF, Elongation 1-alpha factor; HPAEC/PAD, high performance

anion exchange chromatography coupled to pulsed amperometric detector; MS,

Murashige & Skoog culture medium; qRT-PCR, quantitative reverse transcription

polymerase chain reaction.

et al., 2009; Oliveira et al., 2010; Asega et al., 2011; Garcia et al.,
2011).

Sucrose is able to play double role, serving as substrate for
fructan synthesis and as a regulating factor of gene expression
(Pollock and Cairns, 1991; Gupta and Kaur, 2005). Fructan
synthesis is induced by increasing sucrose concentration in
the cell vacuole (Pollock and Cairns, 1991), although other
sugars such as glucose and fructose are also able, less effectively
than sucrose, to stimulate fructan synthesis in excised leaves of
Dactylis glomerata (Maleux and Van den Ende, 2007). However,
the combination of both hexoses was equally effective, suggesting
their quick conversion into sucrose to exert the positive effect on
fructan accumulation.

In Agave tequilana and A. inaequidens, the cultivation of
plants in culturemedia supplemented with 8% sucrose stimulated
the expression of the genes 1-SST and 1-FFT in leaves and stem,
promoting fructan accumulation (Súarez-González et al., 2014).
Sucrose was the most efficient elicitor of 1-SST and 1-FFT gene
expression in the stems of A. inaequidens when compared to
other treatments known to regulate fructan metabolism, such as
abscisic acid, cytokinin, and osmotic stress.

Conversely, Kusch et al. (2009) working with C. intybus
hairy root cultures, showed that increasing sucrose concentration
from 3 to 6% did not result in 1-SST and 1-FFT transcript
accumulation. However, the increase in transcript and inulin
accumulation occurred by lowering nitrogen supply under high
sucrose concentration, indicating that sucrose alone was not
sufficient to induce inulin synthesis in this system.

Calcium was also shown to be essential to induce the activity
and expression of fructosyltransferases mediated by sucrose in
wheat leaves (Martínez-Noël et al., 2006), as a component of the
sucrose signaling pathway that leads to the induction of fructan
synthesis.

Besides stimulating transcription of fructosyltransferases,
sucrose inhibits the activity of fructan exohydrolases, as reported
for C. obovata (Asega et al., 2008), C. intybus (Verhaest
et al., 2007), Helianthus tuberosus (Marx et al., 1997), Triticum
aestivum (Van den Ende et al., 2003), and Lolium perenne
(Lothier et al., 2014). Studies with L. perenne also analyzed the
effect of hexoses, sucrose and their corresponding analogs on
FEH activity and fructan mobilization, by spraying defoliated
sugar starved plants (Lothier et al., 2010). By these treatments,
they showed that sucrose analogs employed (lactulose, palatinose,
and turanose) inhibited FEH activity to the same extent as
sucrose, suggesting the existence of a sucrose signaling.

In summary, sugar status of plant cells is sensed by sensor
proteins, generating signal transduction cascades and influencing
the regulation of a large number of genes (Price et al., 2004; Gupta
and Kaur, 2005), including those involved in fructan metabolism
(Kusch et al., 2009; Súarez-González et al., 2014).

Although the effects of sucrose were described for many
fructan accumulating species as reported above, using different
experimental systems, these studies focused mainly on the
inhibition of fructan exohydrolases activity by sucrose, excepting
the work of Martínez-Noël et al. (2006), which focused
on the effect of sucrose on fructosyl sucrose-synthesizing
enzymes, hampering the discussion about the modulation of the
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whole fructan metabolism by exogenous sucrose in one single
species.

Despite the importance of C. obovata as a model species
for the study of fructan metabolism and the role of sugars in
fructan metabolism regulation, there are no reports on the effect
of carbon sources on the regulation of fructan metabolism in
this species or in any other tropical inulin-accumulating species.
As tissue culture is considered a valuable tool for the study of
primary and secondary metabolisms, in this paper we report the
use of this technique to evaluate the effect of different carbon
sources (sucrose, fructose and glucose) on the modulation of the
activity and expression of enzymes involved in fructan synthesis
and mobilization in plants of C. obovata cultivated in vitro. We
also report on the effect of increasing sucrose concentrations
on fructan accumulation in in vitro plants, considering that
the control and optimization of in vitro culture conditions
are important to achieve higher inulin production in the
future.

Materials and Methods

In vitro Culture of Chrysolaena obovata
Seeds (achenes) of C. obovata were collected in a preserved
Cerrado area in Mogi-Guaçu, State of São Paulo, Brazil (22◦18′S,
47◦11′W), stored at 4◦C and used during 2 months. The seeds
were surface sterilized by washing with 70% ethanol for 1min
and 2.5% sodium hypochlorite for 30min. Following, they were
washed three times in sterile distilled water and placed in
Petri dishes containing the MS culture medium (Murashige and
Skoog, 1962) with half-strength of macronutrients, 3% sucrose
and 0.8% agar. The pH of the medium was adjusted to 5.8
before autoclaving for 15min at 120◦C. Subsequently, seeds were
incubated at 25◦C, under 14-h photoperiod (22.5µmol m−2 s−1)
(Trevisan et al., 2014). One week after germination, plants were
transferred to 300mL glass bottles containing the same medium,
subcultured to fresh medium at 4-week intervals and kept in the
same conditions for growth.

Aiming at plant propagation, rhizophores from 12 month-
old plants germinated in vitro were fragmented (2 × 2mm)
and cultured for 5 months in the same conditions described
above. A homogenous batch of plants was obtained for use in all
experiments.

Experiment 1: Effects of Different Carbon
Sources on Fructan Metabolism
Plants were maintained for 7 days in MS culture medium
with half-strength of macronutrients, 0.8% agar and free of
sugar, until the complete depletion of carbon stocks. They were
subsequently transferred to the same medium containing 3%
sucrose (Suc), 3% fructose (Fru), or 3% glucose (Glc). Sugar
concentration of 3% was previously tested for this species and
was considered adequate for C. obovata growth, development
and fructan metabolism in vitro (Trevisan et al., 2014). Samples
were collected at day 0 (before transfer—control) and after
1, 2, and 5 days of cultivation. Samples of rhizophores and
aerial organs (leaves and stems) were frozen in liquid nitrogen
and stored at −80◦C until analyses. For experiment evaluation,
the parameters analyzed were total fructan content, soluble

carbohydrate composition, enzyme activity and gene expression
of 1-SST, 1-FFT, and 1-FEH.

Experiment 2: Effects of Different Sucrose
Concentrations on Fructan Accumulation
Plants were grown for 30 days in MS culture medium with half-
strength of macronutrients, 0.8% agar and the following sucrose
concentrations 0, 3, 6 and 9%. Samples of rhizophores and
aerial organs (leaves and stems) were collected from the culture
medium, frozen in liquid nitrogen and stored at −80◦C until
analyses. For experiment evaluation, the parameters analyzed
were total fructan content and activity of 1-SST, 1-FFT, and
1-FEH.

Soluble Carbohydrate Analyses
Carbohydrates were extracted from freeze-dried tissue samples as
previously described (Carvalho et al., 1998), modified as follows:
the ethanol and aqueous extracts, constituting the total soluble
carbohydrate extract, were pooled and concentrated under
vacuum at 35◦C. Free and combined fructose (total fructan) were
measured by the ketose-specific modification of the anthrone
reaction (Jermyn, 1956), using fructose (SigmaAldrich R©) as
standard. Soluble carbohydrates were de-ionized through
Dowex ion exchange columns (SigmaAldrich R©), according to
Carvalho and Dietrich (1993) and analyzed by HPAEC/PAD, on
ICS3000 Dionex system (Dionex, ThermoScientific, USA) with
a CarboPacPA-1 column (2 × 250mm), according to Oliveira
et al. (2013). The retention times of the sample peaks were
compared with the reference standards glucose, fructose, sucrose
(SigmaAldrich R©), 1-kestotriose and 1-kestotetraose, and inulin
from tubers of H. tuberosus.

Enzyme Extraction and Assays
Samples were homogenized in 0.05M McIlvaine buffer (pH
5.5; 1:1, w/v) containing 2mM EDTA, 2mM β-mercaptoethanol,
5mM ascorbic acid, and 10% PVPP (w/w), as described in Asega
and Carvalho (2004). Proteins precipitated with (NH4)2SO4 to
a final saturation of 80% were re-suspended at a ratio of ca.10 g
fresh mass equivalent per mL in extraction buffer. Enzymes
were assayed by incubation of the protein extract with different
substrates mixed 1:1 (v/v). The substrates were prepared in
0.05M McIlvaine buffer pH 4.5 for 1-FEH and pH 5.5 for
1-SST and 1-FFT. The extracts were incubated at 30◦C at a
final concentration of 0.2M sucrose for 1-SST activity, 0.2M
1-kestotriose for 1-FFT activity and 5% inulin fromC. obovata for
1-FEH activity. Incubation time was 4 h for 1-SST, 2 h for 1-FFT
and 3 h for 1-FEH. The reactions were stopped by heating the
mixture for 5min at 100◦C. Extraction and assay conditions were
optimized to ensure reliable activity measurements. For activity
determination, samples of the reaction mixtures were diluted 5-
fold in deionized water and analyzed using HPAEC/PAD with
a 2 × 250mm CarboPac PA-1 column on a Dionex system as
above. The gradient was established by mixing eluent A (150mm
NaOH) with eluent B (500mm sodium acetate in 150mm
NaOH) as described in Oliveira et al. (2013). The activities of
1-FEH, 1-SST, and 1-FFT were measured by the quantification
of peak areas of reaction products fructose, 1-kestotriose and
1-kestotetraose, respectively, by comparison with the external
standards.
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Partial cDNA Isolation
Total RNA was extracted from 100mg of frozen samples,
using the TRIzol R© reagent (Invitrogen) according to the
manufacturer instructions. The concentration and integrity of
the RNA samples was assessed by spectrophotometer and 1%
agarose/formaldehyde gel electrophoresis. Previous to cDNA
synthesis, genomic DNA was removed by treatment with
DNAse I (Fermentas). cDNA was synthesized using First Strand
cDNA Synthesis Kit (Fermentas), according to the manufacturer
instructions. Degenerate primers described in Table S1 were used
for 1-SST, 1-FFT, and EF (Elongation 1-alpha fator) isolation.
The amplification conditions were the following: 94◦C for 2min,
35 cycles of 94◦C for 45 s, 58◦C for 1min, 72◦C for 1min; and
a final extension at 72◦C for 5min. The expected size cDNA
fragments were purified by PureLink Quick Gel Extraction and
PCR Purification Combo Kit (Invitrogen) and sequenced using
Big Dye Terminator v.3.1 (Applied Biosystems). C. obovata
sequences were compared against GenBank using the BLASTN
algorithm at the NCBI (National Center for Biotechnology
Information; http://www.ncbi.nlm.nih.gov/) to confirm identity.

Phylogenetic Analysis
Phylogenetic analysis was performed based on the alignment
of C. obovata deduced amino acid partial sequences, along
with the sequences of 1-SST, 1-FFT, 1-FEH and invertases
from Asteraceae, Poaceae and other fructan accumulating
species. Sequences were selected from GenBank (access numbers
described in Figure legend). The alignment was performed
using Clustal X 2.0 (Larkin et al., 2007). Distance analysis was
performed by neighbor-joining algorithm using the software
MEGA 4 (Tamura et al., 2007). Bootstrap analysis was conducted
with 1000 replicates and only the bootstrap values of >70% were
considered for the development of the unrooted tree. The tree
was redrawn with the software FigTree 1.4.2 (Rambaut, 2014).

Primer Design and Validation
Primers for fructan-related and reference genes were designed
with the help of Primer 3 Plus software (Rozen and Skaletsky,
2000). For reference gene 18S ribosomal RNA (18S) and 1-FEH,
primers were designed in the sequences previously isolated for C.
intybus and C. obovata, respectively (Asega et al., 2008; Maroufi
et al., 2010). For 1-SST, 1-FFT and the reference gene elongation
factor 1-alpha (EF) primers were chosen on the partial cDNA
sequences isolated in this work (Table 1). The amplification
of expected PCR products was confirmed by fragment length
on 2% agarose gel electrophoresis and sequencing. qRT-PCR
amplification efficiencies were calculated for each primer based
on a standard curve obtained from tenfold dilution series of a
cDNA pool of all tested samples.

Gene Expression Analysis by qRT-PCR
Total RNA isolation and purification was performed as described
earlier. Genomic DNA contamination was removed by treatment
with DNAse I (Fermentas). cDNA was synthesized from 1.27µg
of total RNA using the SuperScript VILO cDNA Synthesis
Kit (Life Technologies) in a final volume of 20µL, according
to the manufacturer’s instructions. The cDNA synthesized

TABLE 1 | Primers used for C. obovata qRT-PCR expression analysis.

Gene Primer sequence Fragment Tm (◦C)

size (bp)

1-SST F 5′-CATGCTCTACACTGGCAACG-3′ 163 61

R 5′-TAGATGGGTCCCGAAAATCC-3′ 60

1-FFT F 5′-TGCGATTACGGAAGGTTCTT-3′ 140 60

R 5′-CAACATTATAGATTGTAGCCCATCC-3′ 60

1-FEH F 5′-GGCGGATGTTACAATCTCGT-3′ 199 60

R 5′-GTTTTGGAACACCCGAAAGA-3′ 60

EF F 5′-GCTCCTGGACATCGTGACTT-3′ 163 60

R 5′-GACCCCAAGAGTGAAAGCAA-3′ 60

18S F 5′-GGCGACGCATCATTCAAAT-3′ 102 62

R 5′-TCCGGAATCGAACCCTAAT-3′ 59

was then diluted 1:100 and used as a template for qRT-
PCR analyses. A NRT control (not reverse transcribed sample)
was also amplified to confirm the absence of genomic DNA
contamination. Amplifications were carried out in total volume
of 20 uL with EXPRESS SYBR GreenER qPCR SuperMix Kit (Life
Technologies) on Mastercycler R© ep Realplex 2S (Eppendorf,
Hamburg, Germany). PCR conditions used consisted of an initial
heating step at 50◦C for 2min, followed by 94◦C for 2min,45
cycles of 94◦C for 15 s, 55◦C for 1min. After cycling, melting
curves were run from 60◦C to 95◦C for 20min, to confirm that
a single PCR product was amplified. Results were normalized
using 18S and EF as reference genes. The analyses of expression
stability of the reference genes were performed with BestKeeper
(Pfaffl et al., 2004). Stability values of 0.822 (p = 0.004) and
0.872 (p = 0.001) were obtained for 18S and EF reference genes,
respectively. The relative expression level of target genes was
calculated as described by Pfaffl (2001). Values represented the
average of two biological replicates with four technical replicates.

Experimental Design and Statistical Analyses
Trials were set up in a completely randomized experimental
design. For experiment 1 (Effects of different carbon sources on
fructan metabolism), 3 replicates were used, and for experiment
2 (Effects of different sucrose concentrations on fructan
accumulation), 4 replicates were used. In both experiments, each
replicate consisted of three plants cultivated in a 300mL glass
bottle, containing 50mL of culture medium. Data was analyzed
by ANOVA with a posteriori comparison of the means using
Tukey Honestly Significant Difference procedure, to identify
significant differences between treatments. Significant effects are
reported at P < 0.05.

Results

Isolation of the Partial cDNAs
Two partial cDNAs coding for the orthologs 1-SST (accession n◦

KM597067) and 1-FFT (KM597068) of C. obovata were isolated.
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The partial coding region of the ortholog of elongation factor
1-alpha (EF) (KM597066) was also cloned to allow designing
specific primers for gene expression analysis. The 1-FFT cDNA
is 531-bp in length and contains part of the coding region,
including the N-terminal region from the domain of glycosyl
hydrolases family 32 (GH32). Blast analysis showed that C.
obovata 1-FFT has 88% amino acid sequence identity with
Cynara scolymus (AJ000481), 83% with C. intybus (AAD00558)
and 84% with H. tuberosus (CAA0881) 1-FFT sequences, all
belonging to the family Asteraceae.

The 390-bp 1-SST cDNA comprises part of the coding
sequence that also includes part of the GH32 domain. The 1-
SST sequence showed the highest amino acid sequence identity
with 1-SSTs previously isolated from other Asteraceae (94% with
C. intybus, AAB58909; 93% with Lactuca sativa, ABX90019; 93%
with C. scolymus, CAA70855).

An unrooted phylogenetic tree was built with the deduced
amino acid sequences of 1-SST, 1-FFT and 1-FEH from C.
obovata and other fructan accumulating species, and some
invertases (Figure 1). The phylogenetic tree showed a clear
separation between 1-SST, 1-FFT, 1-FEH, and invertases.
Two distinct subgroups can be distinguished for 1-FEH,
one containing sequences from Asteraceae and the other
from Poaceae. Within the 1-SSTs, three subgroups can be
differentiated, one consisting of Poaceae sequences, the other
with sequences from Asteraceae, which includes C. obovata
1-SST, and a third small group with only two 1-SST sequences,
from A. tequilana and Allium cepa. Vacuolar invertases from
wheat and barley grouped with 1-SST from Poaceae while the
vacuolar invertases from sugar beet and chicory grouped near
the Asteraceae 1-SST. 1-FFT sequences formed a major subgroup
including all Asteraceae 1-FFTs and one 1-FFT fromA. tequilana,
whereas the Poaceae 1-FFTs grouped together. As expected, the
phylogenetic tree reveals that C. obovata 1-SST and 1-FFT are
homologous to eudicotyledons rather than monocotyledons.

Effects of Different Carbon Sources on Fructan
Metabolism
In control plants, cultivated in a medium free of carbon,
total fructan content was 63.02 and 93.4mg g−1 dry mass in
aerial organs and rhizophores, respectively (Figure 2). Although
values were not statistically different, fructan contents tended
to increase after the transfer of plants to culture media
supplemented with sucrose (Suc), fructose (Fru), or glucose
(Glc), especially in rhizophores. HPAEC/PAD analysis of soluble
sugars of aerial organs and rhizophores revealed the inulin
homologous series, with similar profiles in all treatments,
including an increase in medium DP fructans in the rhizophore
of plants under different carbon source. When compared to
the rhizophore, the aerial organs presented higher proportion
of glucose, fructose and sucrose (Figure 3). Aerial organs
also presented intermediate non-identified peaks neighboring
1-kestotriose and 1-kestotetraose, and others between higher DP
components of the inulin series.

1-SST activity in the aerial organs of plants treated with
fructose or glucose was similar to the control plants, while in
plants under sucrose treatment, the activity showed a tendency

of increase with time of cultivation (Figure 4A). In control
plants, rhizophores did not present 1-SST activity; however,
following the transfer to medium containing different carbon
sources, the activity was detected from the first day of fructose
and glucose treatments and from the second day under sucrose
treatment. After 5 days, 1-SST activity in rhizophores reached the
highest values, which were similar for all treatments, 101.2, 92.6,
and 132.6µg productmg protein−1 h−1 for sucrose, fructose
and glucose medium, respectively (Figure 4B). 1-SST relative
expression in the aerial organs indicated increases of 4.0-fold
(Suc), 4.8-fold (Fru), and 4.4-fold (Glc) when compared to
control, after 5 days of cultivation (Figure 5A). The expression
level of 1-SST in rhizophores also increased with time of
cultivation, presenting on the fifth day of culture, values 6.3-fold
(Suc), 5.9-fold (Fru), and 7.0-fold (Glc) higher than control plants
(Figure 5B).

1-FFT activity showed no changes in aerial organs or
rhizophores over time, under the different carbon sources
(Figures 4C,D). The relative expression of 1-FFT increased
with time after the transfer to medium with a carbon source.
After 5 days of culture, the relative expression in aerial organs
increased 2.7-fold (Suc), 3.0-fold (Fru), and 2.2-fold (Glc) while
in rhizophores the increases were 4.0-fold (Suc), 3.7-fold (Fru),
and 4.0-fold (Glc) that of the control (Figures 5C,D).

1-FEH showed the highest activity in control plants, 584.3,
and 912.6µg productmg protein−1 h−1 in aerial organs and
rhizophores, respectively. However, the transference of plants
to culture media containing the carbon sources resulted in the
decrease of this activity, more markedly under fructose treatment
(Figures 4E,F). The expression profile was in accordance with
the activity assayed, with higher1-FEH transcript accumulation
in the aerial organs and rhizophores of control plants subjected
to carbon deficit. When transferred to media containing sucrose,
fructose or glucose, the down-regulation of 1-FEH was observed
in aerial organs and rhizophores (Figures 5E,F). Fructose
was more effective in the inhibition of 1-FEH expression in
rhizophores, showing a 6.1-fold (1st day), 5.9-fold (2nd day),
and 4.9-fold (5th day) decrease of transcription when compared
to control plants, excepting for the second day, when glucose
showed a higher effect on inhibition of gene expression (6.2-fold).

Relative expression analysis of all genes presented similar
patterns of expression when normalized by another reference
gene (18S) (Figure S1).

Effects of Different Sucrose Concentrations on
Fructan Accumulation
Growing plants for 30 days in culture medium without sucrose
(0% Suc) led to the intensive consumption of plant reserves
and to marked decrease in total fructans, from 72.5 to 0.16mg
g−1 dry mass in aerial organs, and from 108.6 to 24.8mg g−1

dry mass in rhizophores (Figure 6). When transferred to culture
media containing increasing sucrose concentrations (3, 6, and
9% Suc), fructan contents increased significantly in both aerial
and underground organs, but more markedly, in the last ones,
attaining in these organs, 408.5mg g−1 dry mass under 9% Suc
(Figure 6). Rhizophores and aerial organs from plants cultivated
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FIGURE 1 | Unrooted phylogenetic tree was inferred from the analysis of 38 amino acid sequences from plant 1-SST, 1-FFT, 1-FEH, and invertases,

using the Neighbor-Joining method. All positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons. GenBank

accession numbers are presented in parentheses. Sucrose:sucrose 1-fructosyltransferase (1-SST): CoSST, Chrisolaena obovata 1-SST (KM597067); CiSST,

Cichorium intybus 1-SST (JQ346799); ToSST, Taraxacum officinale 1-SST (AJ250634); HtSST, Helianthus tuberosus 1-SST (AJ009757); AtSST, Agave tequilana

1-SST (DQ535031); AcSST, Allium cepa 1-SST (AJ006066); HvSST, Hordeum vulgare 1-SST (AJ567377); LpSST, Lolium perenne 1-SST (AY245431); ScSST, Secale

cereale 1-SST (JQ728010); TtSST, Triticum turgidum 1-SST (EU981912); FaSST, Festuca arundinacea 1-SST (AJ297369). Fuctan:fructan 1-fructosyltransferase

(1-FFT): CoFFT, C. obovata 1-FFT (KM597068); HtFFT, H. tuberosus 1-FFT (AJ009756); VdFFT, Viguiera discolor 1-FFT (AJ811625); CsFFT, Cynara scolymus 1-FFT

(AJ000481); ErFFT, Echinops ritro 1-FFT (AJ811624); BpFFT, Bellis perennis 1-FFT (AJ811697); DpFFT, Doronicum pardalianches 1-FFT (AJ811696); AtFFT, A.

tequilana 1-FFT (EU026119); TaFFT, Triticum aestivum 1-FFT (AB088410); AsFFT, Aegilops searsii 1-FFT (EU981914); TuFFT, Triticum urartu 1-FFT (EU981913).

1-Fructan exohydrolase (1-FEH): CoFEH, C. obovata 1-FEH(AM231149); CiFEH, C. intybus 1-FEHIIa (AY323935.1); HtFEH1, H. tuberosus 1-FEH1 (KJ946352);

HtFEH2, H. tuberosus 1-FEH2 (KJ946353); PpFEH1, Phleum pratense 6-FEH1 (AB583555); PpFEH2, Poa pratensis 1-FEH (GU228510); LcFEH, Leymus chinensis

1-FEH (FJ178114); AsFEH, Aegilops speltoides 1-FEH (FJ184993); TaFEH1, T. aestivum 1-FEH (AJ508387); TaFEH2, T. aestivum 6-KEH (AB089271). Vacuolar

invertases (INV): CiINV, C. intybus vINV (AJ419971); TaINV1, T. aestivum vINV1 (AJ635225); TaINV2, T. aestivum vINV2 (AF069309); HvINV, Hordeum vulgare vINV

(JQ4111256); BvINV1, Beta vulgaris vINV (XP_010676174). Cell wall invertase (INV): BvINV2, Beta vulgaris cwINV (AJ277458) Bootstrap values for 1000 replicates

are indicated as percentages (higher than 70%) along the branches.

in all sucrose treatments presented the regular homologous inulin
series (data not shown).

1-SST showed a similar pattern of activity in aerial
organs and rhizophores, with activity close to zero in
the absence of sucrose, and increasing linearly with the

increase of sucrose concentration. In 9% Suc, 1-SST
activity was 595.4 (aerial organs) and 969.6 (rhizophores)
µg productmg protein−1 h−1, values respectively 34
and 334 times higher than those detected in 0% Suc
(Figures 7A,B).
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FIGURE 2 | Total fructan in plants of Crysolaena obovata cultured in

vitro without a carbon source for 7 days (day 0) and subsequently

transferred to different carbon sources (sucrose, fructose, or glucose

3%) for 5 days. (A) Aerial organs, (B) Rhizophores. Values are means ± SE

(n = 3). Means do not differ statistically by ANOVA.

The aerial organs showed a gradual increase in 1-FFT activity
with the increase in sucrose concentration. In 9% Suc, the
activity was 5 times higher than in 0% Suc. A different pattern
of activity was observed in rhizophores, in which the activity in
0% Suc was higher than in 3% Suc, however, starting from this
concentration, a pattern of activity similar to that of aerial organs
was observed (Figures 7C,D).

In 0% Suc, values of 1-FEH activity were 504.3 and 1294.2µg
productmg protein−1 h−1 in aerial organs and rhizophores,
respectively. With sucrose supplementation, 1-FEH activity
decreased on average 2.5-fold in aerial organs and 4.2-fold in
rhizophores, independently of the sucrose concentration used
(Figures 7E,F).

Discussion

Despite the importance of Chrysolaena obovata as a model
species for understanding fructan metabolism in vitro and
in vivo, only cDNAs coding for FEHs from this Cerrado species
have been cloned (Asega et al., 2008). To further evaluate the
relative expression of all fructan metabolism genes in response
to different carbon sources, and since no genomic information
is available for C. obovata, partial 1-SST and 1-FFT cDNA

sequences were isolated. Sequence and phylogenetic analyses
confirmed that Co1-SST and Co1-FFT are the C. obovata
orthologs of the well functionally characterized genes involved
in fructan synthesis in other Asteraceae species. Our results are
in accordance with other phylogenetic analyses of 1-SST and 1-
FFT, which grouped preferably with sequences from Asteraceae
instead of Poaceae (Van den Ende et al., 2002), and are consistent
with the hypothesis of polyphyletic origin of the genes involved
in fructan synthesis in plants (Hendry and Wallace, 1993).

The pre-existing complete cDNA sequence of Vh1-FEH
(Asega et al., 2008) and the partial sequences herein acquired,
clearly enabled the expression analyses of fructan metabolism
genes in plants of C. obovata, although the function of new
sequences have not been tested in a heterologous system. To
our knowledge, there is little information available on genes
responsible for inulin synthesis in native Cerrado species (Van
den Ende et al., 2005), and more efforts should be done in the
future to isolate the complete sequence of these genes and to
experimentally confirm its function.

The low fructan content observed in rhizophores of control
plants indicates fructan mobilization to provide energy and
carbon skeletons under sugar starving, in accordance with
the highest 1-FEH activity and expression detected at this
point. Fructan mobilization under low carbon input has been
already demonstrated for C. obovata under greenhouse and field
conditions (Asega and Carvalho, 2004; Asega et al., 2011; Rigui
et al., 2015).

Exogenous sugar supply with sucrose, fructose or glucose
induced the activity and expression of 1-SST and 1-FFT in
rhizophores and repressed the activity and expression of 1-
FEH. The increase in fructosyltransferases clearly leads to an
accumulation of 1-kestotriose and medium DP fructan, showing
a quick shift from source to sink organ independent of the carbon
source. This confirms that the role of rhizophores as sink organs,
described for C. obovata cultivated under optimal conditions of
light, nutrients and water (Carvalho and Dietrich, 1993; Rigui
et al., 2015), is maintained in in vitro condition.

The concomitant increase in the activity and relative
expression of 1-SST and 1-FEH from C. obovata indicate
a transcriptional regulation of fructan metabolism genes, as
previously shown for Festuca arundinacea (Lüscher et al., 2000),
Hordeum vulgare (Wang et al., 2000), and Taraxacum officinale
(Van den Ende et al., 2000).

On the other hand, since changes in 1-FFT activity and
transcriptional profile were slightly distinct, we cannot exclude
a post-transcriptional regulation mechanism of 1-FFT or also the
existence of different isoforms with distinct expression profiles.
In this work, only one isoform of 1-FFT was isolated from C.
obovata using degenerated primers, and specific primers assayed
the expression level of this isoform, as confirmed by single
melting curves. Reports of more than one 1-FFT isoform are
still scarce for inulin-accumulating species, with only T. officinale
having two isoforms of 1-FFT isolated (AJ829549, FFT1, and
AJ829550, FFT2). Surprisingly, no 1-FFT gene was found in the
transcriptome of A. tequilana, suggesting this gene can be less
expressed than 1-SST in the tissues and conditions used (Simpson
et al., 2011).
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FIGURE 3 | HPAEC/PAD profiles of soluble carbohydrates extracted from plants of Crysolaena obovata cultured in vitro without a carbon

source for 7 days (Control) and subsequently transferred to different carbon sources for 5 days. Aerial organs: (A) Control, (B) Sucrose, (C)

Fructose, (D) Glucose; Rhizophores: (E) Control, (F) Sucrose, (G) Fructose, (H) Glucose. G, glucose; F, fructose; S, sucrose; 1-k, 1-kestotriose; N,

1,1-kestotetraose; >4, fructans with DP higher than 4.

Opposing activities and expression profiles of 1-SST and
1-FEH were detected, showing that in in vitro condition the
temporal control of fructan-metabolizing enzymes in the vacuole
is similar to that observed for plants of C. obovata growing
in natural condition (Asega and Carvalho, 2004; Portes and
Carvalho, 2006; Oliveira et al., 2010; Rigui et al., 2015). This is
consistent with the hypothesis of a single regulatory mechanism,
but with opposite effect, for these two genes (Wagner and
Wiemken, 1986; Marx et al., 1997).

Comparative effects of sucrose, glucose and fructose in
fructan metabolism showed that all carbon sources tested could
considerably affect enzyme activities and gene expression under

a few days of carbon supply, since a similar response pattern
was observed, with the exception of 1-SST in aerial organs.
While 1-SST activity was induced in aerial organs already 1 h
after carbon supply, a lag phase was observed for 1-SST activity
in rhizophores. This difference may be due to the preferential
translocation of sucrose into the phloem, compared to fructose
and glucose, which is promptly metabolized in the strongest
sinks, the aerial organs, serving as substrate for fructan synthesis.
As already shown by Trevisan et al. (2014), rhizophores of
in vitro plants present a very limited growth and function as poor
sinks, when compared to greenhouse plants, delaying the start of
fructan synthesis from sucrose.
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FIGURE 4 | 1-SST, 1-FFT and 1-FEH activities in plants of Chrysolaena obovata cultured in vitro without a carbon source for 7 days (day 0) and

subsequently transferred to different carbon sources (sucrose, fructose, or glucose 3%) for 5 days. Aerial organs—(A,C,E); Rhizophores—(B,D,F). Values

are means ± SE (n = 3). Letters compare same carbon source between days of cultivation within each plant organ (P < 0.05).

Most organisms have developed a sensing mechanism and
signaling cascade to respond to the availability of different sugars.
Exogenously supplied hexoses can be rapidly transformed in
sucrose, and sucrose can be broken into hexoses, making it
difficult to discriminate between sucrose, fructose and glucose
signaling (Maleux and Van den Ende, 2007). Glucose and
sucrose-responsive elements were found in the promoter region
of the FEHIIa gene from C. intybus, suggesting the importance
of these sugars in the regulation of fructan metabolism (Michiels
et al., 2004).

Concerning the effect of different sugars, fructose acts as
a more effective inhibitor of fructan hydrolysis in C. obovata.
However, fructose inhibition of 1-FEH activity and expression
is probably related to feedback sugar repression, since fructose
is the main product of inulin degradation. Lothier et al. (2010)
suggest that regulation of fructan mobilization in L. perenne
is dependent of glucose sensing, since fructose supply led to a
weaker inhibition of FEH activity when compared to glucose.

Experiments with C. intybus hairy roots cultures also showed
distinct effects of glucose and fructose on 1-SST and 1-FFT
expression and inulin accumulation. A strong induction of
fructosyltransferases transcript accumulation was observed only
with sucrose or fructose as carbon source, whereas glucose was
less efficient (Kusch et al., 2009). For the levan accumulating
species barley and wheat, the highest induction of fructan
synthesizing enzymes was obtained with sucrose, while glucose
and fructose were also able to induce fructan synthesis, but in a
lesser extent than sucrose (Müller et al., 2000; Noël et al., 2001).

The supplementation with increasing sucrose concentration
induced inulin accumulation at values similar to that observed
for plants grown in a greenhouse (607.2mg g−1 dry mass),
with a linear increase up to 9% of sucrose (262mM), suggesting
that sucrose can be an adequate carbon source for the in vitro
production of this compound. In the presence of sucrose, 1-
FEH activity was inhibited regardless of the concentration used,
whereas 1-SST activity increased gradually with the increase in
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FIGURE 5 | Relative expression levels of 1-SST, 1-FFT and 1-FEH in plants of Chrysolaena obovata cultured in vitro without a

carbon source for 7 days and subsequently transferred to different carbon sources (sucrose, fructose, or glucose 3%) for 5 days,

using the elongation 1-alpha factor (EF) as reference gene. Aerial organs—(A,C,E); Rhizophores—(B,D,F). Values are means (±SD) of two

biological replicates with four technical replicates.

sucrose concentration. A significant inhibition of 1-FEH activity
by sucrose was previously reported for C. obovata in much
lower sucrose concentrations, ranging from 1 to 10mM (Asega
et al., 2008), as well as for H. tuberosus (Marx et al., 1997),
Triticum aestivum (Van den Ende et al., 2003) and L. perenne
(Lothier et al., 2007, 2014), which are inhibited by sucrose at
concentrations of up to 40mM. The similar inhibition profile
of 1-FEH activity observed at the three sucrose concentrations
employed in this work (87, 175, and 262mM), suggest that the
enzyme attained the highest percentage of inhibition in lower
concentrations than the ones supplied herein. On the other hand,
since low photosynthetic rates are commonly measured in plants

grown in vitro (Grout, 1988), the absence of sucrose led to the
consumption of fructan reserves, with the highest activity of
hydrolysis and inhibition of fructan synthesis being measured
after 30 days of starvation.

Finally, the distinct pattern observed for 1-SST and 1-FFT
enzymes in rhizophores suggest a mechanism of differential
regulation of these genes inC. obovata, in contrast with the results
obtained when A. tequilana and A. inaequidens plants were
transferred to culture medium supplemented with increasing
sucrose concentrations from 3 to 8% (Súarez-González et al.,
2014). For these species, a similar pattern of response to
exogenous sucrose, with increased expression of 1-SST and
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1-FFT genes, was described. Inhibitors of Ca2+ signaling and
protein kinases/phosphatases also modulated the expression of
1-SST and 1-FFT in a similar manner, suggesting a common

FIGURE 6 | Total fructan in plants of Crysolaena obovata cultured in

vitro for 30 days under different sucrose concentrations (0, 3, 6, or 9%).

Values are means ± SE (n = 4). Letters compare means at different sucrose

concentrations within each plant organ (P < 0.05).

regulatory mechanism for both enzymes in C. intybus (Kusch
et al., 2009).

Still for C. intybus, the response to a specific sugar source
seems to be linked to nitrogen supply. The transfer from a
medium containing 3% sucrose to a high carbon/low nitrogen
medium induced 1-SST and 1-FFT expression and fructan
accumulation and the opposite response was observed when
plants were transferred back to a standard medium (Kusch et al.,
2009). For C. obovata, the induction of fructan synthesis under
high carbon is independent of nitrogen status, since high nitrate
(16.9mM) and ammonium (13.1mM) concentrations were used
in the culture medium. Although both species belong to the
Asteraceae family and accumulate inulin in its underground
reserve organs, the results indicate a distinct modulation of
fructan metabolism by sugars. However, additional experiments
have to be performed to determine whether these responses could
be “species-specific” or related to differences between the two
experimental systems.

In any case, this study demonstrated that C. obovata in
vitro culture can be successfully used for investigation of
fructan metabolism regulation by exogenous factors, since an
excellent correlation was observed between in vivo and in
vitro plants. The positive effects of different carbon sources

FIGURE 7 | 1-SST, 1-FFT, and 1-FEH activities in plants of Chrysolaena obovata cultured in vitro for 30 days at different sucrose concentrations (0, 3, 6,

or 9%). Aerial organs—(A,C,E); Rhizophores—(B,D,F). Values are means ± SE (n = 3). Letters compare means at different sucrose concentrations (P < 0.05).
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on fructan accumulation opens up the possibility of further
adapting C. obovata in vitro cultures for large-scale inulin
production.
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